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Global instability of slender reinforced concrete walls occurs 
when the concrete section buckles out-of-plane over a portion of 
the wall length and height. Theoretical and numerical analyses 
were conducted on axially loaded prismatic members to evaluate 
the onset of global instability under tension/compression load 
cycles. A buckling theory suitable for hand calculations is intro-
duced and evaluated using data available the literature from tests 
conducted on columns. Computer simulations using force-based 
nonlinear elements with fibers are used to numerically simulate 
the tests and to study the influence of non-uniform strain profiles 
along the height of the member. The study shows that the onset 
of buckling can be identified using either the proposed buckling 
theory or finite element models. Furthermore, buckling is affected 
by gradients of axial load or strain along the length of the member. 
Design recommendations are made to inhibit global wall buckling 
during earthquakes.

Keywords: buckling; earthquake; reinforced concrete; slenderness; wall 
boundary element.

INTRODUCTION
Out-of-plane buckling of structural walls was reported 

following the 2010 Mw 8.8 Maule, Chile earthquake1-3 and 
the 2011 Mw 6.3 New Zealand earthquake.4,5 Figure 1 illus-
trates an example from a building in Chile. These observa-
tions created a renewed interest in research to better under-
stand inelastic buckling of slender structural walls. The 
research included a review of past tests, analytical studies, 
and development of practical design guidance.

Lateral instability of walls or wall-like elements in labo-
ratory tests has been reported previously. Oesterle et al.6 
first reported lateral instability leading to failure of a slender 
test wall with rectangular cross section. Goodsir7 conducted 
a wall testing program to assess the effects of slenderness 
ratio and observed failure due to out-of-plane instability. 
Chai and Elayer8 conducted tests of slender reinforced 
concrete columns, incrementing axial tension/compres-
sion cycles until buckling failure occurred. Thomsen and 
Wallace9 reported the global instability of the slender stem 
of a T-shaped wall. In all the previously cited tests, the test 
specimens had two curtains of longitudinal reinforcement. 
Rosso et al.10 reported global instability in the boundaries 
of two thin reinforced concrete walls with single layers of 
vertical and horizontal reinforcement.

In their review of test results, Oesterle et al.6 observed 
that prior tensile cracking and plastic elongation of the wall 
boundaries for loading in one direction had reduced the 
effective stiffness of the wall, thereby reducing out-of-plane 
buckling resistance when loaded in the opposite direction. 

This behavior is illustrated qualitatively in Fig. 2. Paulay and 
Priestley11 described the mechanics of buckling of a boundary 
element that had been previously yielded in tension and 
developed a design recommendation that related the critical 
slenderness ratio to the mechanical reinforcement ratio and 
displacement ductility ratio. Chai and Elayer8 extended the 
model based on observations from their column tests. Dashti 
et al.12 used finite element models to simulate observed 
behavior of walls, including out-of-plane instability. More 
recently, Dashti et al.13 presented experimental results of 
out-of-plane behavior in complete walls.

The present study reviews the mechanics of out-of-plane 
buckling of prismatic reinforced concrete elements and 
derives an expression relating critical slenderness ratio 
to the maximum tensile strain prior buckling during load 
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Fig. 1—Buckled wall at first story of a 15-story building 
following the 2010 Chile earthquake.
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reversal. The results of the model are compared with results 
of laboratory tests available in the literature8 and OpenSees 
simulations of isolated columns. The combined results lead 
to a design recommendation for wall slenderness to inhibit 
out-of-plane instability. Boundary elements modeled as 
isolated columns have boundary conditions that are different 
from those in actual walls, which is a limitation of this study 
that can be addressed in future research.

RESEARCH SIGNIFICANCE
The study derives and demonstrates a practical engi-

neering approach that can be used to evaluate the buckling 
susceptibility of a slender structural wall or to establish 
design limits to inhibit lateral buckling.

SLENDER COLUMN TESTS
Several tests have been performed8,14,15 on prismatic reinforced 

concrete sections loaded under alternating tension and 
compression cycles, with the aim being to better understand 
instability of wall boundary elements. The 14 tests reported 
by Chai and Elayer8 are especially relevant, as the maximum 

tensile strain was gradually increased during each cycle until 
global buckling occurred during load reversal. These tests 
are used for evaluation of analytical models presented later 
in this paper. Figure 3 shows the reinforcement details for 
the test specimens. All specimens had pin-ended boundary 
conditions (k = 1). Normalweight concrete was used in spec-
imens with a compressive strength of 4950 psi (34.1 MPa). 
Yield strengths of the longitudinal reinforcement were 
51.8 and 66.0 ksi (375 and 455 MPa) for No. 3 and No. 4  
(No. 10 and No. 13) bars, respectively, and yield strength of 
the transverse ties was 99.0 ksi (683 MPa). Table 1 summa-
rizes variables of the test program.

The test specimens were subjected to alternating axial 
tension and compression, where the axial maximum tensile 
strain was gradually increased in each cycle. For tensile strains 
exceeding the yield strain, crack closure would not occur after 
removal of the tensile force. Under subsequent compressive 
loading, the test specimens developed out-of-plane displace-
ments, presumably due to irregular closure of the cracks. 
Eventually, the combination of axial compression and out-of-
plane deformation resulted in crushing of the concrete on the 

Fig. 2—Cracks under tension and compression cycles, after Chai and Elayer.8

Fig. 3—Reinforcement details for test specimens, after Chai and Elayer.8 (Note: 1 in. = 25.4 mm.)
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flexural compression face, leading to global buckling failure. 
Figure 4 shows the buckled shape of two specimens.

ANALYTICAL MODEL FOR BUCKLING
As discussed by Oesterle et al.,6 Paulay and Priestley,11 and 

Chai and Elayer,8 lateral instability of earthquake-resisting 
walls is determined by a complex interplay among wall 
geometry, material properties, and loading history. Under 
earthquake loading, the wall boundaries will be subjected to 
alternating tension and compression (Fig. 2). If the longitu-
dinal reinforcement in the boundary yields in tension, the wall 
boundary cracks, with the residual crack width dependent on 
the amplitude of the reinforcement tensile strain εsm during the 
tension excursion. This cracked section has reduced stiffness, 
which increases the tendency for wall instability when the 
section is subsequently subjected to compression.

The kinematics and equilibrium of a wall boundary with 
out-of-plane deformation can be derived with reference to 

Fig. 5, modified from Paulay and Priestley.11 One assumes 
that the wall boundary is first subjected to some maximum 
tensile strain εsm larger than the yielding strain εy, such that 
crack closure under force reversal can only be achieved by 
yielding the longitudinal bars in compression (Fig. 5(b)). 
In a wall with two curtains of reinforcement, any slight 
asymmetry in the reinforcement or the loading will cause 
one curtain to yield before the other, leading to out-of-plane 
curvature (Fig. 5(c) and 5(d)). In a wall with one curtain of 
reinforcement, out-of-plane curvature can occur without 
yielding the longitudinal reinforcement (Fig. 5(e)).

To estimate conditions for stability, the effective height 
must be defined. The unbraced height is the clear story 
height hu (Fig. 5(a)). For a multi-story wall with length lw 
not less than the first-story clear height hu, tensile yielding 
due to in-plane moment is likely to spread over a height 
not less than the clear story height hu. Thus, it is reason-
able to assume that the region susceptible to lateral buckling 
extends over the height hu. In the present derivation, it is 
also assumed that the framing elements (or foundation) are 
sufficiently stiff to represent effectively fixed boundaries to 
the slender wall element. Thus, the effective height of the 
wall boundary is khu = 0.5hu (Fig. 5(a) and 5(c)).

If it is assumed that the buckled shape follows a sine 
function (approach first followed by Chai and Elayer8), the 
maximum curvature at midheight is given by

 φ δ
π

max max= −




klu

2

 (1)

Table 1—Test matrix, after Chai and Elayer8

Height-to-
thickness 
ratio L0/b

Longitudinal 
reinforcement 
ratio, percent

Transverse 
reinforcement 

spacing, in. (mm)
No. of speci-
mens tested ξ

11.75 2.1 2.25 (57) 1 0.190

11.75 3.8 3.0 (76) 1 0.123

14.75 2.1 2.25 (57) 3 0.189

14.75 3.8 3.0 (76) 3 0.123

17.75 2.1 2.25 (57) 3 0.189

17.75 3.8 3.0 (76) 3 0.123
Fig. 4—Buckled shape for column with: (a) L0/b = 14.75; 
and (b) L0/b = 17.75, after Chai and Elayer.8

Fig. 5—Lateral instability of wall boundary previously yielded in tension, partly after Paulay and Priestley.11
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The maximum lateral displacement is defined as δmax = ξb 
in Fig. 5(c). The relation between δmax and ϕmax is

 δ ξ φ
πmax max= = 





b
khu

2

 (2)

For a wall with two curtains of reinforcement, ϕmax can be 
estimated from the geometry of the strain profile in Fig. 5(d). Note 
that, at the onset of buckling, the wall boundary unloaded 
from the tensile loading and has been reloaded partially in 
compression. It can be assumed that the two curtains of 
reinforcement will be at some residual tensile strain εr when 
one of the curtains yields in compression and crack closure 
commences on that side of the wall. Precise determination of 
εr is complicated by the highly nonlinear and path-dependent 
behavior of the reinforcement under deformation reversals, 
and some simplifications are considered herein. Upon defor-
mation reversal after reaching the maximum tensile strain 
εsm, just before the boundary element yields in compression, 
the longitudinal reinforcement will have unloaded by strain 
εs = fsm/Es and reloaded in compression to –εy, ignoring the 
Bauschinger effect, such that the residual tensile strain is 
approximately εr = εsm – fsm/Es – εy. To simplify the model, 
the residual tensile strain is approximated as εr ≈ εsm – 0.005.

At the instant of crack closure, the out-of-plane curvature is

 φ
ε ε

max = =
−r sm

d d
0 005.

 (3)

With this approximation, Eq. (2) and (3) are combined to 
obtain

 ξ
π

ε
b

d
khsm u=

− 





0 005 2.
 (4)

When the wall is subjected to in-plane loading, the flex-
ural compressive force C acting through the out-of-plane 
displacement ξb produces an out-of-plane moment C × ξb. 
If the out-of-plane moment strength is sufficient to resist this 
moment, the cracks will close through the thickness of the 
wall and the wall will be stabilized. Otherwise, the wall will 
experience out-of-plane moment failure and lateral insta-
bility failure. Based on these considerations, Paulay and 
Priestley11 derived an expression for the critical value of 
out-of-plane displacement ξcrb, defined by

 ξcr
m m m

= + − 
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in which m = ρfy/fc ′is the mechanical reinforcement ratio.
Substituting ξcr for ξ for and κb for d in Eq. (4), and then 

reorganizing terms, one obtains the critical ratio of thickness 
to effective height as
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Alternatively, for given geometry, one can solve Eq. (6) 
for the maximum tensile strain εsm,cr as

 ε κξ
π

sm cr cr
cr

u

b
kh, .=







+
2

0 005 (7)

The main variables appearing in Eq. (6) and (7) are slen-
derness ratio khu/bcr, maximum tensile strain εsm in longitu-
dinal reinforcement, effective depth parameter κ for longitu-
dinal reinforcement, and ξcr. Parameter κ can be found from 
d = κb, where it is noted that κ ≈ 0.8 for thin walls with 
two curtains of reinforcement and 0.5 for walls with a single 
layer of reinforcement. From this, it is clear that walls with 
two curtains of longitudinal reinforcement are inherently 
more stable than walls with a single curtain.

Equation (5) relates parameter ξcr with the mechanical 
reinforcement ratio m. For practical construction, 0.4 ≤ √ξcr ≤ 
0.6 (corresponding to values of m between 0.31 and 0.02). 
Equation (6) is plotted in Fig. 6 for the two practical limit 
values of √ξcr, κ = 0.8, and considering fixed-fixed boundary 
conditions (k = 0.5). Also shown is the limiting slenderness 
ratio of boundary elements for special structural walls from 
ACI 318-14—that is, hu/bcr = 16.

Figure 7 plots results of Eq. (6) (continuous curves) and 
reported values of εsm for the tests reported by Chai and 
Elayer.8 The circle symbol corresponds to the maximum 
tensile strain in the final cycle where buckling failure 
occurred and the triangle symbol corresponds to the 
maximum tensile strain in the previous load cycle where the 
specimen was still stable. The results suggest that Eq. (6) is 
a good approximation of the test results.

The parameter ξ  defined in Eq. (6) is inconvenient for 
preliminary design. Selecting a value of √ξc = 0.5 (mid-value 
in the practical range), Eq. (6) can be simplified to

 
b
kh
cr

u
sm= −0 7 0 005. .ε  (8)

Equation (8) is now plotted in Fig. 8 with the results of all 
columns tested by Chai and Elayer.8 The results suggest that 
Eq. (8) is a reasonable approximation to describe behavior of 
uniformly loaded prisms. If εsm is limited to 0.03 (Rodriguez 
et al.16), and k = 0.5 for fixed-fixed boundary conditions, 

Fig. 6—Critical slenderness ratio as function of maximum 
tensile strain.
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Eq. (8) results in hu/bcr = 18.1. This compares with the ACI 
318-14 limit of 16, as shown in Fig. 6.

FINITE ELEMENT MODEL FOR BUCKLING: 
CONSTANT AXIAL FORCE

The analytical model introduced in the preceding section 
is suitable for modeling lateral instability of prismatic 
members under constant axial force. The finite element 
method can be used to study response under more gener-
alized loadings. This begins by testing the finite element 
method for the case of constant axial force.

A finite element model was assembled using force-based 
nonlinear beam-column elements with fibers and corotational 
formulation to consider nonlinear geometry. The model was 
implemented in OpenSees.17 The material object used for 
concrete is Concrete01. This is a uniaxial concrete model18-21 
with degraded linear unloading/reloading stiffness according 
to the work of Karsan and Jirsa22 and no tensile strength. The 
uniaxial Giuffré-Menegotto-Pinto23 steel material object with 
isotropic strain hardening is used to model reinforcing bars 
(Steel02 material). This model can represent the hysteretic 
behavior of steel reinforcement exhibiting the Bauschinger 

effect together with isotropic strain hardening. Perfect bond 
is assumed between steel and concrete.

Lateral instability during crack closure initiates because 
the application point of the external force may not coincide 
with the centroid of the resistant force in the reinforcement. 
There are several plausible explanations of why this occurs, 
including variations in reinforcement properties, irregularities 
in reinforcement placement, and earthquake loading effects in 
the orthogonal direction. To initiate instability in OpenSees, 
the authors reduced the yield stress in one layer of reinforce-
ment by 1 ksi (7 MPa). Studies using yield stress reductions 
of 0.1, 0.3, 0.5, 0.7, and 1 ksi (0.7, 2, 3, 5, and 7 MPa) showed 
that behavior was insensitive to this parameter.3

Strain localization in force-based elements causes the 
response to be mesh-dependent. To address this behavior, 
the concrete material is regularized according to the proce-
dure developed by Coleman and Spacone.24 Material regu-
larization allows maintaining objectivity of the structural 
response independent of the number of integration points 
selected for analysis.

To test sensitivity of the finite element results to the 
modeling assumptions, the authors developed various models 
of Chai and Elayer’s Test Specimen 4WC3_1 (L0/b = 14.75 
with ρ = 2.1%).7 The finite element model (Fig. 9) uses four 
force-based elements with four, five, or six integration points 
per element (Gauss-Lobatto quadrature). The concrete in 
each element is discretized into 11 fibers evenly distributed 
across the short dimension of the cross section. Longitu-
dinal reinforcing bars are represented directly. The upper 
and lower limits for compressive fracture energy reported by 
Feenstra25—0.06 and 0.14 kip/in. (10 and 25 N/mm)—are 
considered. Table 2 summarizes the variables of the analysis.

The regularized concrete material introduced by Coleman 
and Spacone24 considers a parabolic prepeak behavior 
followed by a linear postpeak softening branch until a stress 
of 20% fc′is reached at a prescribed strain labeled ε20. The 
residual strength is assumed to remain constant for strains 
larger than ε20. Table 2 presents ε20 for all analyzed cases.

Figure 10 compares the measured and calculated 
responses for Test Specimen 4WC3_1. Figure 10(a) shows 
the nominal axial strain versus out-of-plane displacement 
normalized by the column width b, and Fig. 10(b) shows 

Fig. 7—Measured and estimated values of εsm: (a) ρ = 2.1%; 
and (b) ρ = 3.8%. Experimental data obtained from Chai 
and Elayer.8

Fig. 8—Measured and estimated εsm values according to Eq. (8). 
Experimental data obtained from Chai and Elayer.8
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the nominal axial strain versus axial force. Compression 
variables have a positive sign. For peak tensile strains up 
to –0.0133, the measured out-of-plane displacements were 
less than 0.05b. After loading to peak tensile strain close to 
–0.016, unloading toward compression resulted in a rapid 
increase in the out-of-plane displacement. The out-of-plane 

displacement resulted in crack closure on one side of the 
cross section followed by concrete crushing.

The calculated responses show larger out-of-plane 
displacements at lower tensile strains than were observed in 
the tests. “Crack” closure, however, resulted in straightening 
of the analytical model during these low-amplitude cycles. 
Instability failure was calculated to occur for tensile strain 
of –0.0133. It is interesting that the finite element model of 
this section and the analytical model of the preceding section 
both identify instability at a tensile strain less than that of the 
actual test.

The calculated responses shown in Fig. 10 are relatively 
insensitive to both the number of integration points and the 
compressive fracture energy, confirming that a mesh- 
independent structural response is achieved by regularizing 
the concrete material using the constant fracture energy 
approach. Therefore, for the following analyses, calculated 
results are shown only for models using four elements with 
four integrations points each and a constant fracture energy 
of 0.1 kip/in. (18 N/mm), which is at the middle of the plau-
sible range reported by Feenstra.25

Figures 11, 12, and 13 compare the measured and calcu-
lated responses of Specimens 4WC4_2 (L0/b = 14.75 with ρ = 
3.8%), 5WC3_2 (L0/b = 17.75 with ρ = 2.1%), and 5WC4_3 
(L0/b = 17.75 with ρ = 3.8%), respectively. Lateral instability 
failure is obtained in each of the analyses. Similar to results 
for 4WC3_1, however, the OpenSees model underestimates 
the maximum tensile strain required to buckle the column 
during load reversal, and overestimates the maximum lateral 
displacement in cycles before failure.

FINITE ELEMENT MODEL FOR GLOBAL 
BUCKLING: VARYING AXIAL FORCE

Figure 14(a) depicts a slender wall in a multi-story building 
with uniform story heights. The moment diagram is repre-
sentative of moments occurring in a frame-wall structure 
under lateral loading. Given the relatively smaller variation 

Fig. 9—OpenSees model for column instability.

Table 2—Concrete ultimate strain according to 
Coleman and Spacone24 regularization

Gc, kip/in. (N/mm) Number of integration points ε20

0.06 (10)

4 0.017

5 0.027

6 0.040

0.14 (25)

4 0.040

5 0.066

6 0.099

Fig. 10—Specimen 4WC3_1, response sensitivity to 
compressive fracture energy and number of integration 
points. Experimental data obtained from Chai and Elayer.8 
(Note: 1 kip = 4.45 kN.)

Fig. 11—Specimen 4WC4_2, measured versus analyt-
ical response. Experimental data obtained from Chai and 
Elayer.8 (Note: 1 kip = 4.45 kN.)
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of moment over the first-story height, it might be reason-
able to model the boundary element in that story as having 
constant axial force over height, as was done in previous 
sections of this paper. Figure 14(b) depicts the same wall, 
except it has a taller first story, resulting in greater variation 
of moment with the first story. In this case, the assumption of 
constant axial force may no longer be valid.

The effect of moment gradient or, alternatively, of axial 
force variation along the wall height, is evaluated in an 
idealized way using OpenSees models of isolated boundary 
elements, as shown in Fig. 15. Each boundary element is 
modeled like the model described previously, except using 
10 evenly spaced nonlinear beam-column elements along 
the length. The analytical model is fixed at the base and free 
to translate vertically at the top without rotation. Axial force 
is applied through point forces at the nodes, following one of 

five different axial force distributions (Fig. 15(b) to 15(f)). A 
model is first loaded in tension to a target vertical displace-
ment of –0.1 in. (–2.5 mm) at the top of the model, followed 
by loading in the opposite direction until the displacement 
at the top of the model is returned to zero. These cycles 
are repeated, but with the vertical displacement in tension 
incremented –0.1 in (–2.5 mm) in each cycle until achieving 
buckling failure during load reversal.

Fig. 12—Specimen 5WC3_2, measured versus analyt-
ical response. Experimental data obtained from Chai and 
Elayer.8 (Note: 1 kip = 4.45 kN.)

Fig. 13—Specimen 5WC4_3, measured versus analyt-
ical response. Experimental data obtained from Chai and 
Elayer.8 (Note: 1 kip = 4.45 kN.)

Fig. 14—Slender multi-story wall and moment diagram over 
the height: (a) M nearly constant in first story; and (b) M 
varies in first story.

Fig. 15—(a) OpenSees model for boundary element, axial 
force gradient: (b) α = 1; (c) α = 0.8; (d) α = 0.5; (e) α = 
0.25; and (f) α = 0, where α is the ratio between top and 
bottom axial force.
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The analyses are carried out for four of the test columns 
reported by Chai and Elayer8 (Specimens 4WC3_1, 
4WC4_2, 5WC3_2, and 5WC4_3). These columns were 
tested under pinned-pinned boundary conditions, in contrast 
with the fixed-fixed boundary conditions in the analytical 
model. Therefore, the unsupported height hu for analytical 
models was set at 2L0, where L0 is the length of the column 
test specimen. The effective slenderness ratios were khu/b = 
14.75 and 17.75 for these cases. One additional case was 
considered analytically, having khu/b = 25 and longitudinal 
steel ratio ρ = 2.1%.

Figure 16 shows the analysis results for Specimen 
4WC3_1 with constant axial force over the height (α = 0). 
Four plots are provided: 1) the history of the average axial 
strain (top vertical displacement divided by the model height) 
versus axial force at the base, limited to cycles immediately 
preceding buckling; 2) the variation over height of axial 
strain normalized by the yielding strain, εs/εy, as measured 
during the maximum tensile excursion before buckling; 3) 
the normalized axial force distribution over height; and 4) 
a comparison between the calculated out-of-plane displaced 
shape (continuous line) and theoretical sine shape (discon-
tinuous line) applicable to elastic buckling of a fixed-ended 
column. For this test case, maximum tensile strain prior 
to buckling is εs ≈ 7εy (Fig. 16(b)) and the buckled shape 
obtained from OpenSees matches the theoretical sine curve 
expected for a fixed-ended column under uniform axial 
compression (Fig. 16(d)).

When the axial load is changed to a non-uniform profile 
like the one shown in Fig. 15(c), where α = 0.8, the buckled 
shape obtained from analysis is no longer a sine curve. 
Instead, maximum out-of-plane displacements are shifted 
downward (Fig. 17(d)). The average elongation prior to 
buckling is slightly increased relative to the case where α = 
1.0, that is, εave = 0.013 for α = 0.8 versus εave = 0.012 for α = 1.0. 
Note that the local strains are no longer constant over height, 
and the maximum value is nearly twice the value for α = 1.0.

Figures 18 and 19 show how the maximum lateral 
displacement shifts toward the base, and maximum tensile 
strain increases, with decreasing value of α.

The results of the preceding paragraphs are for Test Spec-
imen 4WC3_1. Similar results are obtained for the other 
cases that were studied.3

Figure 20 shows the maximum local strain and average 
strain versus α for all analyzed cases. Maximum local strain 
is defined as the maximum tensile strain prior to buckling 
along the column length, and average strain is defined as 
the total column elongation prior to buckling divided by its 
initial length. Both strains are normalized by their corre-

Fig. 16—Specimen 4WC3_1, α = 1: (a) average axial strain 
versus axial force at the base; (b) normalized axial strain; 
(c) normalized axial force; and (d) normalized buckled 
shape. (Note: 1 in. = 25.4 mm.)

Fig. 17—Specimen 4WC3_1, α = 0.8: (a) average axial 
strain versus axial force at the base; (b) normalized axial 
strain; (c) normalized axial force; and (d) normalized 
buckled shape. (Note: 1 in. = 25.4 mm.)

Fig. 18—Normalized out-of-plane displacement, theoretical 
shape (discontinuous line) versus OpenSees modeling (khu/b = 
14.75, ρ = 2.1%) for: (a) uniform axial force profile α = 1; 
(b) α = 0.8; (c) α = 0.5; (d) α = 0.25; and (e) α = 0. (Note: 
1 in. = 25.4 mm.)

Fig. 19—Normalized tensile strain profile, prior buckling 
during load reversal, along the element height (khu/b = 
14.75, ρ = 2.1%) from OpenSees modeling for: (a) uniform 
axial force profile α = 1; (b) α = 0.8; (c) α = 0.5; (d) α = 
0.25; and (e) α = 0. (Note: 1 in. = 25.4 mm.)
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sponding values for constant axial force over the height (α = 
1.0). For all cases, the local strain increases monotonically 
with decreasing α, that is, as the axial force gradient becomes 
steeper. This increment in the maximum local strain increases 
with increasing steel ratio and with increasing slenderness 
ratio. The average strain also increased with decreasing α, 
although this increment is modest and can be neglected for 
practical purposes.

Analytical models for the assessment of nonlinear strains 
in structural walls commonly use either plastic hinge models 
or fiber models in which the fibers extend over a height on 
the order of the typical story height. For such models, the 
“average” strain results of Fig. 20 are applicable, indicating 
that the effect of α can be ignored without undue conser-
vatism. Therefore, the results of Eq. (6) can be conserva-
tively applied. In buildings with unusually tall stories, as in 
a building with an atrium, the length of the plastic hinge or 
the height of the fiber may be only a small fraction of the 
unbraced clear height of the wall. Where this occurs, the 
applicability of Fig. 20 needs to be evaluated on a case-by-
case basis.

SUMMARY AND CONCLUSIONS
Past earthquakes and laboratory tests have shown the 

vulnerability of slender structural walls to lateral insta-
bility. An analytical study was carried out to understand the 
primary variables that affect instability, with the following 
conclusions:

1. The tendency of a structural wall to buckle under cyclic 
loading depends mainly on: a) the slenderness ratio khu/b 
of the wall boundary; b) the maximum tensile strain expe-
rienced by the member prior to axial compression; and c) 
whether the wall as one or two curtains of reinforcement.

2. An analytical model for buckling of prismatic members 
with two curtains of reinforcement under uniform tension/
compression cycles is used to derive an equation to identify 
walls that are susceptible to lateral instability. The model 
produces results that compare well with results obtained 
from laboratory tests.

3. Lateral instability of prismatic members subjected to 
cyclic lateral loading can be simulated using finite-element 
computer software using nonlinear beam/column elements.

4. Structural loading can produce tensile and compres-
sive stresses that vary approximately linearly from some 

maximum value at the bottom to some smaller value at the 
top of the clear height. For such members, the variable axial 
force produces a buckled shape that is shifted toward the 
base. Maximum local tensile strain prior to onset of buckling 
increases as the axial force gradient increases. Tensile strain 
averaged over the clear height, however, does not increase 
significantly.

5. In multi-story buildings with story heights not signifi-
cantly different from the typical story height, it is reason-
able to estimate the tendency for lateral instability using the 
average strain over the plastic hinge length or the typical 
story height, regardless of moment gradients over the first-
story height.
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NOTATION
Ag = gross area of the specimen
b = wall width
bcr = critical wall width
c = neutral axis depth
C = compressive force (Fig. 3)
Cc = compressive force in concrete (Fig. 3)
Cs = compressive force in reinforcement (Fig. 3)
d = effective depth of boundary element (Fig. 3)
Es = reinforcement Young’s modulus
fc′ = specified compressive strength of concrete
fsm = maximum tensile stress in boundary element reinforcement
fy = reinforcement yield stress
Gc = concrete compressive fracture energy
hu = unsupported height
k = effective length factor
L0 = length of the column specimen
lw = horizontal length of the wall section
m = mechanical reinforcement ratio ρfy/fc′
Na = axial force in boundary element
T = tension force in boundary element
α = ratio of axial force at the boundary element top to axial force at 

the bottom
β1 = ratio of depth of rectangular stress block to neutral axis depth
γ = relative position of concrete compressive force Cc (Fig. 3)
δmax = wall maximum lateral deflection
εres = reinforcement residual tensile strain
εsm = maximum tensile strain in boundary element reinforcement
εy = reinforcement yield strain
κ = ratio d/b
ξ = ratio δmax/b
ρ = ratio of boundary element reinforcement
ϕmax = maximum curvature at the boundary element midheight (Fig. 3)

Fig. 20—Normalized maximum tensile strain during cycle 
before buckling versus α.
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